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Abstract: Disease diagnosis and classification pose significant challenges due to the limited
capabilities of traditional methods to obtain molecular information with spatial distribution.
Optical imaging techniques, utilizing (auto)fluorescence and nonlinear optical signals, introduce
new dimensions for biomarkers exploration that can improve diagnosis and classification. Never-
theless, these signals often cover only a limited number of species, impeding a comprehensive
assessment of the tissue microenvironment, which is crucial for effective disease diagnosis and
therapy. To address this challenge, we developed a multimodal platform, termed stimulated Raman
scattering and second harmonic generation microscopy (SRASH), capable of simultaneously
providing both chemical bonds and structural information of tissues. Applying SRASH imaging
to azoospermia patient samples, we successfully identified lipids, protein, and collagen contrasts,
unveiling molecular and structural signatures for non-obstructive azoospermia. This achievement
is facilitated by LiteBlendNet-Dx (LBNet-Dx), our diagnostic algorithm, which achieved an
outstanding 100% sample-level accuracy in classifying azoospermia, surpassing conventional
imaging modalities. As a label-free technique, SRASH imaging eliminates the requirement
for sample pre-treatment, demonstrating great potential for clinical translation and enabling
molecular imaging-based diagnosis and therapy.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Effective disease diagnosis and classification are crucial first steps toward successful treatment,
representing a significant challenge in biology and medicine. Traditional medical imaging
modalities, such as magnetic resonance imaging, positron emission tomography, and ultrasound
imaging, often lack the necessary combination of high spatial resolution and molecular information
provided by optical imaging methods. While fluorescence microscopy has been widely used, its
potential is constrained by the limited number of simultaneous targets it can detect. Additionally,
specific optical modalities, for example, Raman spectroscopy, second harmonic imaging, and
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transient absorption, provide information for lipids/proteins/nucleic acids, collagens, and pigments,
respectively. However, relying solely on single-modality imaging restricts comprehensive
assessment of the tissue microenvironment, which is crucial for accurate disease diagnosis and
effective therapy.

This challenge is particularly evident in diagnosing azoospermia, a significant contributor
to global infertility. Azoospermia, defined as the complete absence of sperm in the semen,
affects millions of families worldwide and requires accurate diagnosis for proper treatment.
Non-obstructive azoospermia (NOA), the most difficult to identify, represents 10%-15% of
male infertility cases [1,2]. Current treatment methods such as microdissection testicular sperm
extraction (micro-TESE) [3–5] only work in 50% of NOA patients due to the challenges in
differentiating between normal and abnormal seminiferous tubules solely based on their color
and size [6,7]. Testicular biopsy can further enhance the precision; still, the current procedure
involves time-consuming hematoxylin and eosin (H&E) staining and requires highly skilled
technicians and clinicians for morphology-based detection [8].

Although molecular-level information offers a more precise snapshot of cellular or tissue
physiology [9], ensemble-averaged measurements from complex tissues are subject to high
variability. Therefore, in situ molecular imaging is advantageous for clinical diagnosis and
treatment monitoring. In animal models, multiphoton microscopy has been utilized to mediate
sperm extraction during micro-TESE surgery by performing real-time staging of spermatogenesis
based on the autofluorescence spectroscopic characteristics of sperm and Sertoli cells, and
second harmonic generation (SHG) signal from collagen [10]. In addition, three-channel optical
imaging, i.e., SHG, short- and long-wavelength autofluorescence, has been used to examine
human testicular biopsy tissue [11]. These studies demonstrate the potential of multimodal
imaging for improving surgical treatment outcomes in men with NOA.

Advancements in spectroscopy modalities hold promise for improving disease diagnosis.
Raman spectroscopy, in particular, has emerged as a valuable tool for characterizing biomolecules
based on their chemical bond composition and molecular structures. By utilizing the sensitivity of
Raman spectroscopy to molecular bond structures, comprehensive insights into complex diseases
can be obtained. Previous studies have demonstrated the potential of Raman spectroscopy
in identifying both complete and incomplete spermatogenesis in seminiferous tubules from
partial Sertoli-cell-only (SCO) rat models and human samples [12,13]. The abundance of
spectral peaks in Raman spectroscopy contributes substantial information for disease diagnosis,
highlighting its potential for effective diagnostic applications. However, the precision of single-
point measurements in detecting highly heterogeneous tissues is limited, necessitating the
development of an imaging technique that provides high spatial resolution with rich molecular
information.

To tackle these challenges, we develop stimulated Raman scattering and second harmonic
generation imaging (SRASH), which offers multidimensional molecular and structural information
of tissues and a novel set of neural networks to enhance its capability for rapid disease classification
(Fig. 1). The SRASH platform utilizes stimulated Raman scattering (SRS) imaging to provide fast,
label-free imaging of lipids and total proteins, and SHG imaging to track collagen fibers. This
method takes advantage of the intrinsic signals from intact, unstained tissue slices, eliminating
the need for time-consuming sample pre-treatment before imaging. In addition, we have
developed a novel algorithm, LiteBlendNet-Dx (LBNet-Dx), to extract information from the
rich, high-dimensional dataset effectively. Current deep learning models, such as ResNet-50,
Inception-ResNet-v2, and Swin-T [14–16], are designed for conventional RGB images, requiring
large datasets to achieve accurate predictions. Here, with the new dimension of information
provided by chemical imaging, LiteBlendNet leverages multi-scale feature fusion and dilated
convolutions to provide an enlarged receptive field, while maintaining a lightweight structure.
Furthermore, unlike previously reported margin detection methods that identify disease-related
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cores [17–19], NOA subtyping necessitates phenotyping of the sample, achieved through a
voting algorithm (Dx) that employs weighted summation of the classification results of sample
patches. Consequently, as shown in the result section, LBNet-Dx exhibits a remarkable 96.2%
accuracy at the patch-level and a perfect accuracy of 100% at the sample-level in the normal
and NOA diagnostic tasks. On NOA subtyping task, LBNet-Dx achieves a patch-level accuracy
of 96.1% and maintains a sample-level accuracy of 100% for both NOA subtypes, showcasing
unprecedented performance.

Fig. 1. Concept of SRASH. (A) The clinical unprocessed human testicular tissue samples
were collected and frozen sections were made. (B) Illustration of SRASH microscope setup.
Pump and Stokes refer to excitation lasers. EOM: electro-optic modulator; PMT: photo-
multiplier tube; PD: photodiode. (C) The lipid (2850 cm−1) channel, protein (2930 cm−1)
channel, and collagen (SHG) channel were colored in green, red, and blue, respectively.
(D) Composite image was generated by merging three channel images. (E-H) Structure
of LBNet-Dx, containing patch generation module, LBNet for patch-level classification,
weighted (weight w1 to wn) sum module for decision, and final sample-level classification
probability.

2. Methods

2.1. Patients and tissue specimens

The testicular tissues were obtained from patients who went through sperm retrieval surgery at The
Third Affiliated Hospital of Guangzhou Medical University. A total of 31 patient samples were
collected for this study, in which 17 patients were diagnosed with obstructive azoospermia (OA)
or anejaculation who have received testicular sperm aspiration (TESA) for assisted reproductive
therapy and 14 NOA patients who have received micro-TESE. All tissues were snap-frozen in
liquid nitrogen immediately after the tissue retrieval for frozen sectioning. 31 tissue slides were
prepared, which were verified and graded following the World Health Organization guidelines
by at least two pathologists. Written informed consent was obtained from all subjects, and all
experimental protocols were approved by the ethics committee at The Third Affiliated Hospital
of Guangzhou Medical University.

2.2. SRASH microscopy system setup

SRASH microscope is illustrated in Fig. S1. The fundamental 1031 nm beam (∼2ps) was used
as the Stokes, and the wavelength tunable output (700-990 nm) was used as the pump. The pump
beam was tuned to 795.9 nm and 790.9 nm for the two Raman bands at 2850 cm−1 (lipid) and
2930 cm−1 (protein). The Stokes beam was intensity modulated by an electro-optical modulator
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at 80 MHz and collinearly combined with the pump beam through a dichroic mirror (650 nm
cutoff, Thorlabs). The combined beam was delivered to the laser scanning microscope (BX51WI,
Olympus) and focused onto the samples with an objective (UPLSAPO 60XWIR, NA 1.2 water,
Olympus). The pump beam was detected by a homemade photodiode, then the SRS signal was
extracted by a lock-in amplifier. SHG signals from collagen fibers were collected through the
same objective and detected with a photomultiplier tube. Each field of view (FOV) was imaged
with a size of 1200× 1200 pixel2 (360× 360 µm2) with a lateral resolution of ∼ 300 nm, and 10
µs pixel dwell time. Each FOV was averaged three times.

2.3. Quantitative and statistical analysis

The raw images were subject to background subtraction and laser power normalization. To
analyze and compare lipid droplet content and size, a threshold was applied on the 2850 cm−1

channel to extract the lipid droplet feature for quantification. The sample sizes for quantitative
and statistical analysis were normal (n= 34); NOA (n= 27); SPT (n= 14); SPG (n= 13), after
excluding outlier data through interquartile range (IQR) calculation. The uncommon NOA
subtypes (SCO tubule and empty seminiferous tubule) was not included in the quantitative
analysis. For statistical analysis, data were first tested for normality. If the data is non-Gaussian,
a nonparametric Mann–Whitney U-test was performed. Otherwise, a one-tailed student’s t-test
was performed. p< 0.05 was judged to be statistically significant.

2.4. Image preprocessing and data augmentation

All image processing steps (Fig. S2) were done using ImageJ. First, the image data set was
generated by converting the raw SRASH images into three-channel RGB images, where red,
green, and blue represent 2930 cm−1, 2850 cm−1, and SHG channels, respectively. In the normal
and NOA diagnostic experiments, the image dataset was divided into a training/validation set (54
images, 26 normal and 28 NOA) and a test set (22 images, 12 normal and 10 NOA) using a 7:3
ratio, ensuring a balanced number of patches in both classes. For the diagnostic experiments
involving the two subtypes of NOA (not including a small number of uncommon NOA subtypes),
we selected 15 SPT and 19 SPG images from each of the 38 NOA images. Out of these, 3 SPT and
5 SPG images were used as the test set, while the remaining images were assigned to the training
set. A large number of patches were obtained by the dense sliding window algorithm. The sliding
window size is 300× 300 pixels, and each step is shifted by 100 pixels to generate image blocks
from the RGB images of 1200× 1200 pixels. Through this process, 100 patches were generated
per images initially. Patches with more than 90% of background pixels (tissue-free area with
the pixel value set as 0) were determined to be invalid patches and be removed, resulting in 30
- 90 valid patches per images (Fig. S3). The valid patches were subject to data augmentation,
including random horizontal/vertical flips, random rotation of 45 degrees on these patches, and
brightness/contrast/saturation jitters with a magnitude of 0.4 using the PyTorch framework, to
enhance the generalization and robustness. Finally, these patches were fed into LBNet-Dx for
training after z-score normalization using means of (0.485, 0.456, 0.406) and standard deviations
of (0.229, 0.224, 0.225) for the three channels.

2.5. Hyperparameter optimization by cross-validation

The hyperparameters of LBNet were optimized using a 9-fold cross-validation approach. First,
the 54 images from the training/validation set were randomly divided into 9 groups (9 folds) of
equal size. Then, during each iteration of the cross-validation process, one fold was held out as a
validation set while the model was trained on the remaining 8 folds. This process was repeated
9 times, with a different fold used as the validation set in each iteration, resulting in a set of
optimized hyperparameters. The average cross-validation accuracy achieved by the model was
96.1%, with a variance of 4e-4. Finally, the optimized network was trained on the entire training
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set of 54 images and evaluated on the remaining 22 images. Due to the limited sample size
available for NOA subtype diagnosis, we did not employ cross-validation specifically for this
issue but directly utilized the hyperparameters determined from the aforementioned process.

2.6. LiteBlendNet implementation

LiteBlendNet (Fig. S4) is a lightweight deep learning model implemented using PyTorch (v1.10)
with a compact architecture, consisting of just 3 million parameters. The input image undergoes
initial feature extraction through several convolutional layers and batch normalization layers. The
extracted feature maps are then passed through the BlendModule, a feature fusion module that
performs multi-scale feature fusion. The BlendModule comprises three branches, each consisting
of a combination of standard convolutional layers and dilated convolutions, allowing for feature
extraction from different receptive fields. Additionally, LiteBlendNet incorporates residual
connections, enabling direct feature propagation between layers to facilitate information flow and
mitigate the vanishing gradient problem. The feature maps are subsequently down-sampled using
pooling layers to reduce their spatial dimensions. Following that, a sequence of convolutional
layers, SiLU activation functions, and batch normalization layers further process the feature maps.
Finally, a global average pooling layer is applied to obtain a fixed-length feature vector, which is
then fed into a fully connected layer to produce the final classification output. The categorical
cross-entropy loss function was used as the loss function in the gradient descent process. The
hyperparameters of the network were determined as described in the cross-validation experiments.
For the training, the AdamW optimizer with an initial learning rate of 8e-4, β1= 0.6, β2= 0.999,
ε of 10-8 (numerical stability constant), and batch size= 40 was set, and the learning rate was set
to decay by 20% every 10 epochs. Regarding the discrimination between normal and NOA, our
final report is based on the results obtained after 80 training epochs. For distinguishing between
the two subtypes of NOA, our analysis relies on the outcomes achieved after 50 epochs. The
network was trained and tested on a server (Intel Xeon Gold 6248 CPU, Tesla V100 PCIe 32GB
GPU).

2.7. Inference algorithm for sample-level diagnosis

The inference algorithm for sample-level diagnosis involves mapping predictions made at the
patch-level to the sample-level classification in order to produce the final diagnosis result.
Typically, the categories of a sample are determined by combining the classification results
of all patches that belong to that sample. However, it is important to recognize that each
patch may contain different amounts of useful information when fed into the LBNet. Thus, to
calculate the categories of a sample, the patches must be weighted according to their effective
information. To determine the weights, the number of valid pixels contained in each channel of
the patch was calculated, and this information is used to perform a weighted summation of the
probability distributions of the patch outputs. Then, the probability was renormalized to obtain
the sample-level probability distributions. To ensure that the classification method is reliable at
the sample-level, a threshold requirement was implemented. Specifically, if the probability of a
class is greater than 80%, the classification result is considered valid; otherwise, it is marked
as unidentifiable. This requirement ensures that the classification results have a high level of
confidence (See Fig. S5 for details).

2.8. Implementation of machine learning methods

Widely used machine learning algorithms, including Support vector machines (SVM), K-Nearest
Neighbor (KNN), and Decision Trees (DTs), were selected for performance comparison with
LBNet-Dx. In addition, Gradient Tree Boosting (GTB) was also compared as an ensemble
learning method that enhances multiple weak classifiers into one strong classifier. These
algorithms are implemented by calling the Scikit-Learn library:
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SVM: sklearn.svm.SCV
KNN: sklearn.Ineighbors.KNeighborsClassifier
DTs: sklean.tree.DecisionTreeClassifier
GTB: sklearn.ensemble.GradientBoostingClassifier
Same input and output processing procedures as the LBNet-Dx were performed for these

machine learning methods.

3. Results

3.1. SRASH imaging of testicular tissues

Multimodal SRASH images were acquired on frozen tissue slices from 31 patients (Table S1).
Firstly, the normal testicular tissues from OA patients were imaged to evaluate the capability
of SRASH imaging to reveal the structure of seminiferous tubules (Fig. 2(A-D)). A significant
difference in the contents and distribution of lipids and proteins was observed at the subcellular
level (Fig. 2(A-B)). As ubiquitously found in cells and tissue, protein component provided a clear
tissue structure and morphological features (Fig. 2(B)). Specifically, less lipid found in the nucleus
compared to cytoplasm provided cellular morphology information comparable to the H&E result
but without labeling. Besides, the lamina propria of the seminiferous tubule was highlighted by
showing only a protein signal with a strong SHG signal (Fig. 2(C)), contributing from collagen
fibers. Importantly, due to the minimum sample preparation, SRASH imaging better retained the
tissue intact than H&E slides where cells or biomolecules were lost in the washing and staining
procedures (Fig. 2(D) and Fig. S6). As a result, several small lipid droplets (LDs) were observed
(Fig. 2(E), white arrows). Overall, SRASH demonstrated label-free, molecular-selective imaging
of human testicular tissues showing highly heterogenic molecular distributions within a single
seminiferous tubule.

To investigate the spatial molecular signatures of abnormal seminiferous tubules, we performed
SRASH imaging on the testicular tissue slice from the NOA patients. According to the maturity of
seminiferous tubules, the tissues from NOA patients were divided into two common NOA subtypes
(Table S1), blocked in sperm cells (SPT), blocked in spermatogonia (SPG); the remaining were
categorized as uncommon NOA subtypes (SCO tubule and empty seminiferous tubule). From
the SRASH images of NOA tissues, several molecular signatures were identified (Fig. 2(F-I)
and Fig. S7). The change in the lamina propria was observed. In both types of NOA tissues,
collagen fibers were thickened and often truncated (Fig. S7(C) and Fig. S7(F)), which is even
more obvious in SPG (Fig. S7(F)). Interestingly, compared to the normal tissue (Fig. 2(A)),
lower lipid signals were found in both types of NOA tissues, with much smaller LDs scattered
in the seminiferous tubules (Fig. S7(A) and Fig. S7(D)). While only a few LDs were found
in SPT (Fig. 2(F-G)), almost no LDs were found in SPG (Fig. 2(H-I)). In SPT seminiferous
tubules, some clean protein droplets (Fig. 2(G), blue arrows) were observed in addition to some
LDs (Fig. 2(G), white arrows), while only LDs can be observed in normal and SPT groups. In
uncommon NOA subtypes, such as SCO tubule and empty seminiferous tubule, SRASH images
also provided distinct diagnostic features (Fig. S8). In the SCO tubule (Fig. S8(A-C)), obvious
vitreous degeneration occurred in the seminiferous tubules, with a few LDs. The vacuity of the
tubule lumen, thickening of lamina propria, and significant hyperplasia of interstitial fibrous
tissue outside the tubule could all be significantly observed (Fig. S8(D-E)), which were consistent
with H&E (Fig. S8(F)).

For quantitative analysis, two indexes reflecting the amount of lipid accumulation were
compared: the mean lipid intensity of LD and the area percentage of LD in seminiferous tubules.
The mean intensity of LD increased significantly (Fig. 2(J)), and the area decreased significantly
in the NOA group compared to the OA group (Fig. 2(K)). Such a pattern indicated that although
more LDs are presented in normal tissues from OA patients, they are denser in NOA patients.
No significant difference was observed between the two NOA subgroups in the mean intensity
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Fig. 2. SRASH images of seminiferous tubules and quantitative analysis of the lipid
distribution. (A-C) Raw SRASH images of normal testicular. (A) Raw SRS image at
2850 cm−1 (lipid). (B) Raw SRS image at 2930 cm−1 (protein). (C) Raw SHG image
(collagen). (D) Composite image of lipid (green), protein (red), and collagen (blue) channels.
(E) Corresponding zoomed images from rectangles in (D), LDs (white arrows). (F) Three-
channel composite image of SPT seminiferous tubule. (G) Corresponding zoomed images
from rectangles in (F), protein droplets (blue arrows), LDs (white arrows). (H) Three-channel
composite image of SPG seminiferous tubule. (I) Corresponding zoomed images from
rectangles in (H). (J-M) Quantitative analysis of the lipid distribution in the seminiferous
tubules. Each point represents one seminiferous tubule. Normal (n= 34); NOA (n= 27);
SPT (n= 14); SPG (n= 13). Data are shown as mean±SEM. *P< 0.05, **P< 0.01, n.s.
non-significant. Scale bar: 50 µm.
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(Fig. 2(L)), but the area percentage of LDs in SPG decreased significantly (Fig. 2(M)). Given
that these two subgroups of NOA were divided based on their spermatogenic potentials, these
results suggest the correlation between LDs and spermatogenesis: fewer number of LDs, the
weaker ability of spermatogenesis.

3.2. Deep learning-based inference algorithm for assisted diagnosis

To enhance the efficiency of diagnosing azoospermia, we developed a deep-learning-based
inference algorithm, LBNet-Dx, and evaluated its performance on a set of 76 images. We note
that the sample size is relatively small for the deep learning, which tend to have model overfitting
problem. To address challenge, we designed a lightweight model and employed approaches,
such as data augmentation, L1 regularization, and early stopping. Furthermore, we performed
a 9-fold cross-validation [20] to demonstrate the reliability of LBNet on the small sample size
(see Methods). The average accuracy achieved in the 9-fold cross-validation was 96.1%, with a
variance of 4e-4, demonstrating the high precision and stability of the algorithm.

Fig. 3. Comparison of LBNet-Dx classification of SRASH imaging. (A) The classification
probabilities of the test set (n= 22) on the ground truth classes are plotted in descending
order, with green indicating correct classification. Dashed line indicates classification
threshold. (B) Patch-level confusion matrix on the test set. (C) Accuracy comparison of
LBNet-Dx and conventional machine learning methods. (D) Accuracy comparison between
different channel combinations. (E) ROC curve comparison of patch level between different
channel combinations. The content in brackets in the legend is the AUC value of the curve.
(F) The classification probabilities of the subtypes of NOA test set (n= 8) on the ground
truth classes are plotted in descending order, with green indicating correct classification.
Dashed line indicates classification threshold.

In the subsequent calculation of the patch classification categories using a probability dis-
tribution, we determined the optimal threshold value of 0.393 (Fig. S9(A)) based on Youden’s
index from the training results. Patches with a positive probability higher than the threshold
value were classified as the NOA group; otherwise, they were considered as a normal group. To
determine the final category of each sample, we obtained the sample-level probability distribution
by weighting the sum and renormalizing results from all patches within the sample (Fig. S10).
Additionally, to ensure the reliability of the classification results, we set a probability threshold of
0.8. Any probability below this threshold was considered not reliable and marked as unidentifiable.
LBNet-Dx exhibited nearly perfect performance on the test dataset. At the sample-level, the
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classification accuracy achieved is 100% across all 22 samples (Fig. 3(A)). The patch-level
classification accuracy was 96.2%, as evident from the confusion matrix (Fig. 3(B)), and the
area under curve (AUC) value on the receiver operating characteristic (ROC) curve was 99.1%
(Fig. 3(E)). These results indicate that LBNet-Dx performs on par with a perfect classifier.

In comparison to several conventional machine learning models, including support vector
machines (SVM), K-nearest neighbors (KNN), gradient tree boosting (GTB), and decision trees
(DTs), LBNet-Dx outperformed all of them significantly at both the sample and patch levels
(Fig. 3(C), Table 1). Specifically, at the patch level, LBNet-Dx achieved a recall of 96.9%,
specificity of 95.1%, precision of 96.5%, and F1 value of 0.967. In contrast, traditional machine
learning methods, such as KNN and DTs only reached ∼50% accuracy, while SVM and GTB
achieved 70% classification accuracy, which is insufficient for two-classification problems (see
Supporting Material for implementation of machine learning). At the sample-level, none of
the tested machine learning algorithms achieved more than 50% accuracy after the weighted
summation process and threshold requirement. Importantly, we explored the relationship between
patch-level and sample-level accuracies in the inference algorithm through 1-million-time
simulations (Fig. S11), which revealed the critical need for extremely high patch-level accuracy
to ensure reliable inference. We also compared the performance of LBNet-Dx with other reported
deep learning models, and found better performance using LBNet-Dx for classification at both
patch-level and sample-level (Table S2). From this perspective, LBNet-Dx performs exceptionally
well and more reliably than the traditional machine learning and deep learning models we tested.

Table 1. Comparison between LBNet-Dx and conventional machine learning methods

Patch-level LBNet-Dx SVM KNN GTB DTs

Accuracy 0.962 0.710 0.484 0.718 0.553

Recall 0.969 0.784 0.279 0.770 0.706

Specificity 0.951 0.606 0.772 0.645 0.340

Precision 0.965 0.736 0.632 0.753 0.600

F1 0.967 0.759 0.387 0.761 0.648

Theoretically, the multi-channel information in SRASH imaging is essential for accurate
diagnosis using LBNet-Dx. To confirm this, we compared results using single- or two-channel
images. As shown in Fig. 3(D), all three channels in SRASH imaging are required for LBNet-Dx
to achieve the highest accuracy. Notably, while the SHG channel alone had the lowest prediction
accuracy, its information was critical for near 100% accuracy in the three-channel group, as
indicated by the significant improvement of the ROC curves compared to the two-channel group
containing only SRS images at 2850 and 2930 cm−1 (Fig. 3(E)). We also demonstrated the
performance of LBNet-Dx without 2850 or 2930 cm−1 channel (Fig. 3(D- E)). The results showed
a noticeable decrease in accuracy at both the patch and sample level. Overall, these results
highlight the essential contribution of multi-channel information obtained from SRASH to the
classification performance of LBNet-Dx algorithm.

To further demonstrate the potential of LBNet-Dx in classifying NOA subtypes, we performed
classification on 15 SPT and 19 SPG images (see Methods). Even with such a limited amount
of data, LBNet-Dx achieved a patch-level classification accuracy of 96.1% and a sample-level
classification accuracy of 100% (Fig. 3(F)). We note that small sample size introduces uncertainties
in evaluating the performance of the model. The potential overfitting was mitigated by applying
various regularization methods. Still, there was a noticeable discrepancy in the AUC performance
between the training and test sets (Fig. S9), suggesting limitations in the generalization ability
of the model. Nevertheless, the overall performance of LBNet-Dx on the NOA subtyping has
demonstrated the potential of this model for performing disease subtyping.
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3.3. Weight localization of LBNet-Dx prediction

Unlike typical end-to-end deep learning approaches that follow a “black box” method, we
demonstrated the validity of LBNet-Dx algorithm by image-wise weight localization. It is
important to recognize that not all pixels have equal importance in the decision-making process of
the algorithm. Therefore, identifying “hot spots” for classification can aid clinicians in accurately
and efficiently identifying relevant regions in the tissue samples for staging or phenotyping.
Furthermore, recognizing disease-related spatial features can provide valuable insights into
underlying mechanisms. To accomplish this goal, we utilized Gradient-Weighted Class Activation
Mapping (Grad-CAM) [21] to highlight the most critical regions of the images used by LBNet-Dx
in its decision-making process. Grad-CAM calculates the rate of change of the final convolutional
layer of the network, which captures the most complex and high-level features of the image, to
the predicted class score. Subsequently, each activation map in the final convolutional layer is
multiplied by the corresponding gradient value, and the resulting weighted feature maps are
summed to generate a visualization showing the image regions that are most discriminatory for
classification.

Fig. 4. Weight localization of LBNet-Dx processes. Composite Grad-CAM localization
maps of Normal (A) and NOA (B-C) samples in the test set. The red and blue colors of the
heatmap correspond to high and low probabilities of abnormal spermatogenesis. Scale bar:
50 µm.

Weight localization analysis revealed that LBNet-Dx accurately identified valid pixels, as
evidenced by the hot spots in patches from the tissue edge (Fig. 4). Regions predicted with a
higher probability of abnormal spermatogenesis are colored red in the heatmaps, whereas those
with a lower probability are colored blue. Importantly, we observed a correlation between the
distribution of hot spots and the SHG signal and LD aggregation. While the hot spots in both
normal and NOA tissue areas were not concentrated on LD-rich areas (Fig. 4), SPG samples
(Fig. 4(C)) received more attention in areas with higher SHG signals than normal (Fig. 4(A)) and
SPT (Fig. 4(B)). This suggests that lipid-rich areas are less relevant to abnormal spermatogenesis,
while collagen fibers play a more significant role. These results affirm that the classification
made by SRASH is closely linked to biomolecule-dependent signals, highlighting the potential
for identifying disease-related features for diagnosis and mechanism studies.
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4. Discussion

We have developed a robust approach to identify NOA without tissue staining or labeling by the
SRASH platform. Compared to conventional histological evaluation, which requires extensive
washing and processing, SRASH imaging requires minimal sample preparation and preserves
more intact tissue for analysis. In addition, by visualizing the spatial distribution of multiple
biomolecules such as lipids, proteins, and collagen fibers in testicular tissue, SRASH imaging
sheds light on the underlying mechanisms of azoospermia, offering new possibilities for disease
diagnosis and treatment.

It is important to note that multi-species information obtained from the SRASH imaging
is essential for final classification. In particular, NOA patients exhibited increased collagen
fiber deposition in the thickened lamina propria and reduced LD in the seminiferous tubules
compared to normal tissue from OA patients. Grad-CAM analysis supports the importance of
the lamina propria as a critical feature in distinguishing normal and NOA seminiferous tubules,
suggesting that alteration in collagen fiber structure may be a signature of the disease. As
previous studies have shown that the thickness of the lamina propria is negatively correlated with
spermiogenesis [22,23], collagen fiber deposition may play an important role in the development
of NOA. Although the collagen fiber information from the SHG signal alone was insufficient for
the sample classification, this channel was required to reach highly accurate prediction. Similarly,
the combination of SRS and SHG has shown great promise in imaging complicated tissue samples
for studying diseases [24–26]. These results further emphasize the importance of multimodal
imaging provided by the SRASH platform, and combining multiphoton fluorescence platform
may obtain more dimensional information, further improve performance for spermatogenesis
studies in the future, such as the treatment of azoospermia, exploring the pathogenesis of NOA.

Furthermore, SRASH imaging quantitatively measures metabolic status with subcellular
resolution, providing lipid distribution in single seminiferous tubules. Reduced LD was found
in AI tissues, which may indicate potential regulation of spermatogenesis by lipid metabolism.
Indeed, lipid metabolism is closely related to spermatogenesis [27–29]; therefore, one possible
mechanism is that reduction of lipid reservoir could lead to energy deprivation in Sertoli cells,
which are essential for supporting germ cell membrane remodeling. Further mechanistic studies
are expected to provide new insights into novel therapeutic strategies for azoospermia.

Multimodal imaging has emerged as a promising tool for effective disease diagnosis, offering
a wealth of compositional information, molecular concentrations, and spatial distribution. Yet,
extracting useful information from this high-dimensional data remains challenging. While
conventional machine learning methods such as SVM, KNN, and DTs have been used for medical
image-based disease diagnosis [30–32], recent advancements in deep learning have significantly
improved medical image processing. Deep learning algorithms can automatically extract
features from medical images, facilitating early disease prediction [33,34], clinical diagnosis
[17,18,30,35–39], and tissue margin detection with high accuracy [19,40–42]. However, a
significant challenge for machine learning is the scarcity of standardized datasets for training,
particularly when advanced imaging techniques are employed. Therefore, an approach that can
yield robust and accurate predictions while using a small dataset for training would be invaluable.

High-dimension data generated by SRASH imaging is utilized efficiently for clinical diagnosis
with the help of the deep learning algorithm LBNet-Dx developed in this study. LBNet is a
specifically designed lightweight network that mitigates the reliance on large-scale datasets,
making it suitable for working with small datasets, which is crucial in the context of limited
availability of samples in biomedical imaging. LBNet incorporates multi-scale feature fusion and
dilated convolutions to enhance spatial information integration, resulting in superior classification
performance compared to traditional classification algorithms. These characteristics contribute
to its significance in the field of biomedical imaging analysis. The weighted voting scheme
in the inference algorithm enhances robustness and reliability, while the threshold mechanism
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eliminates the risk of misdiagnosis and underdiagnosis. SRASH performs better classification
accuracy and diagnosis speed than previous work using Google Cloud AutoML Vision to classify
H&E images [43]. In combination with Grad-CAM analysis, SRASH could guide rapid and
efficient diagnosis. In our study, we utilized LBNet-Dx for the diagnosis of two subtypes of
NOA. However, due to the limited size of the dataset, the reliability of the obtained results is
somewhat compromised. In future research, expanding the dataset’s size will further bolster
the model’s performance and reliability, enabling a deeper understanding of NOA subtypes and
providing more robust support for their clinical applications. With these capabilities, SRASH can
be applied to diagnosing azoospermia and other diseases where subtyping or staging is needed,
such as gout, mammary gland calcification, and skin diseases.

5. Conclusion

In summary, SRASH imaging combined with LBNet-Dx has the potential to serve as an efficient
diagnostic tool for the accurate and rapid classification of diseases, as demonstrated in the
disease classification of azoospermia and its subtypes. By enabling label-free imaging of frozen
tissue slices and automatic voting, this approach can greatly improve clinical outcomes for
male infertility patients, surpassing traditional azoospermia diagnostic procedures in speed.
Additionally, this could facilitate the guidance of surgeons performing micro-TESE when an
in vivo imaging scheme is adopted. Given the small sample sizes for training the algorithm,
this approach is highly suitable for clinical implementation. Furthermore, it can be extended to
other tissue imaging and disease diagnosis applications where multimodal imaging is employed.
This technique would allow more informed decisions about the best treatment options for male
infertility and potentially other diseases through precise tissue imaging and analysis.
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